

Catalytic Combustion of Diesel Soot over Perovskite-Type Catalyst: Potassium Titanates¹

XiuHong Meng^{a, b}, Qiang Wang^c, Linhai Duan^{a, b}, and Jong-Shik Chung^b

^a Liaoning Key Laboratory of Petrochemical Engineering, Liaoning Shihua University, Fushun, 113001, China

^b Department of Chemical Engineering, POSTECH, Pohang, 790-784, Republic of Korea

^c Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom

e-mail: lhduan@126.com

Received July 11, 2011

Abstract—Potassium titanates with a high crystallinity were successfully prepared by the sol–gel method and characterized by XRD, SEM, and BET surface area measurements. $K_6Ti_4O_{11}$, $K_2Ti_2O_5$, $K_2Ti_4O_9$ were found to have better soot oxidation performance compared with Pt/TiO_2 and CeO_2 based catalysts. $K_2Ti_2O_5$ may be an excellent candidate for soot oxidation due to its high oxidation activity, water-stability, resistance to sulfur poisoning and economical advantages. Certain amount of NO_x can contribute to the catalytic combustion of diesel over potassium titanates, implying that K_2TiO_5 may be a kind of catalyst for simultaneous removal of NO_x and soot.

Keywords: potassium titanates, diesel soot, soot oxidation, NO_x

DOI: 10.1134/S0023158412050102

1. INTRODUCTION

The emission of the various pollutants from the exhaust gases leads to a serious atmospheric pollution and climate change [1, 2]. Particulate matter (PM) and NO_x are the main pollutants in diesel engine emissions. The increasing demand of the diesel engines in the heavy-duty engine sector will lead a large amount of soot particulate matter and NO_x emission [3]. Increasingly stringent environmental legislations on the reduction of NO_x and soot from the various sources of exhaust gases require the devices and technology that can abate these pollutants [4]. For the removal of NO_x the selective catalytic reduction (SCR) and NO_x storage—reduction (NSR) are currently the most favored technologies, while for the elimination of soot diesel, particulate filters (DPFs) are usually taken into consideration [5]. However direct oxidation of these soot particulates takes place at temperatures of 825–875 K, while the temperature of diesel exhaust is typically 450–675 K, and when the engine is fitted with non-catalytic traps frequent high temperature regeneration are required [6, 7]. These regenerations are usually inefficient and inconvenient. The high temperature regeneration of the uncatalyzed filter is generally carried out injecting a diesel fuel into the exhaust stream. This strategy leads to an uncontrolled exothermic heat release, which can destroy a filter. In this case, a catalyzed soot is the good way to decrease

the soot burn-off temperature in a controlled fashion, and in this way to increase the overall fuel efficiency of the diesel engine.

Pt-based catalyst is always designed as a multi-functional reactor that functions not only as NO_2 generator but also as soot filter [8]. However, precious metal catalysts are expensive, so that it is desirable to develop cheap and efficient candidate catalysts. So far, a large number of papers reported that perovskite-type oxides [9, 10], CeO_2 based oxides [11–13] and some other systems showed soot oxidation activities, but the oxidation temperature was not low enough for practical application. We recently synthesized a new type of potassium titanate catalysts as a promising substitute for Pt-based catalysts for NO oxidation, and these catalysts showed a higher activity for the NO oxidation to NO_2 and better resistance to the inhibitory effects of NO_2 and SO_2 [14–18]. However, the soot oxidation performances of potassium titanates have not been investigated in detail.

The goal of the current study is to systematically screen a series of new potential potassium titanates on their catalytic activity for soot oxidation by O_2 . The tight contact between catalyst and soot was achieved by grinding in an agate mortar in order to define an intrinsic catalytic activity under optimal conditions. The loose contact was made shaking gently the reactor tube that contains the catalyst-soot mixture up and down for 20 s. The soot oxidation activities are correlated with the content of K and Ti in potassium titanates.

¹ The article is published in the original.

2. EXPERIMENTAL

2.1. Catalyst Synthesis

Potassium titanates $K_6Ti_4O_{11}$, $K_2Ti_2O_5$, $K_2Ti_4O_9$ were prepared by sol-gel method. The starting materials were KNO_3 (Shinyo Pure Chemical Co., Ltd, purity 99.5%), $Ti(OC_2H_5)_4$ (Sigma-Aldrich, purity 99%) and citric acid anhydrous (Sigma-Aldrich, purity 99.5%). The citric acid anhydrous solution was prepared using ethylene glycol as solvent, and then the calculated amount of $Ti(OC_2H_5)_4$ was added to above citric acid anhydrous solution under stirring, and then KNO_3 in light excess dissolved in ethylene glycol was added to the above reacting mixture. The mole ratio of citric acid: total metal ions were controlled to be around 1.5 : 1. The competition between hydrolysis and the condensation reactions was controlled with an excess of distilled water and a desired volume of NH_3-H_2O , which sets PH of the reacting mixture to 6. Stirring at 40°C with the evaporation of water was used to secure the adherence of hydrolyzed and condensed alkoxide solution ("Sol"). The gel was then heated at 120–150°C for several hours to make a primary powder, which was calcined at desired temperature to obtain the powder with a final composition.

2.2. Catalyst Characterization

The BET specific surface areas were calculated from the adsorption isotherms of N_2 at 77 K by means of Micrometrics ASAP 2010 sorption analyzer. The samples were degassed at 300°C in vacuum for 5 h before adsorption measurements. X-ray diffraction patterns were obtained using an X-ray analyzer (XRD, M18XHF, Mac Science Co., Japan). Ni-filtered CuK_α radiation ($\lambda = 0.15415$ nm) was used with an X-ray gun operated at 40 kV and 200 mA. The samples were scanned over the $2\theta = 10^\circ - 80^\circ$ range of with a rate of 0.02° per step. The morphology of catalysts was investigated by field emission scanning electron microscopy (FE-SEM, Hitachi, S-4200).

2.3. Soot Oxidation Activity Tests

Soot oxidation activity tests were performed in a flow-reactor, consisting of a packed-bed made of quartz tube (10 mm internal diameter). The reactor temperature was controlled by a proportional-integral-derivative (PID) temperature controller (Han Kook electronic Co.) and measured by a K-type thermocouple (0.5 mm outer diameter). The feed gas was composed of NO_x and O_2 balanced with He. The NO_x from the reactor outlet were continuously determined by means of an NO_x analyzer (Chemiluminescence $NO-NO_2-NO_x$ analyzer, Model 42C, high level, Thermo Environmental Instruments Inc.), and the CO_2 concentration was analyzed by 41C High Level

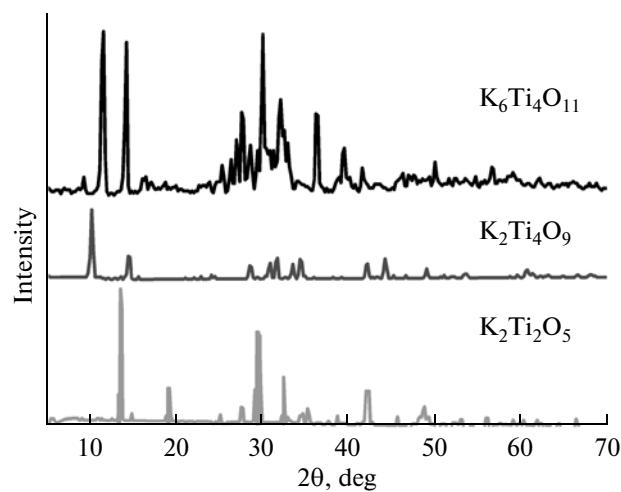


Fig. 1. XRD diffraction patterns of potassium titanates catalysts.

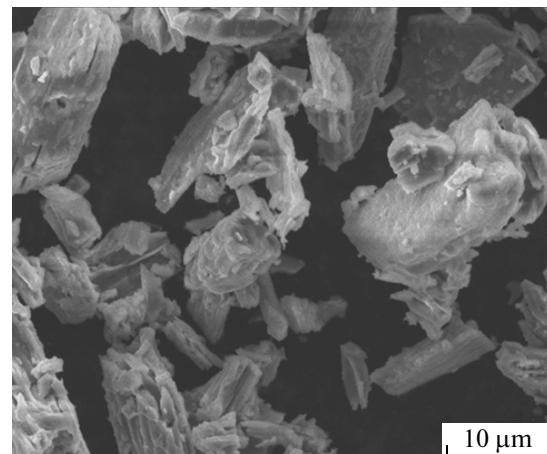
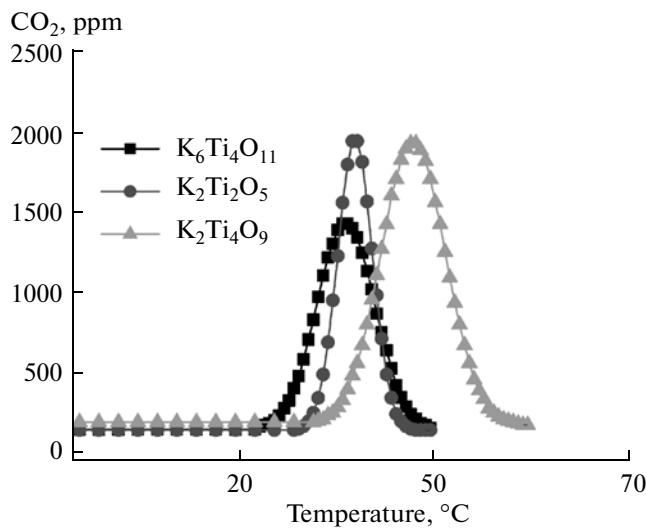


Fig. 2. SEM images of synthesized $K_2Ti_2O_5$.


Gas Filter Correlation Analyzer (Thermo Environmental Instruments Inc.).

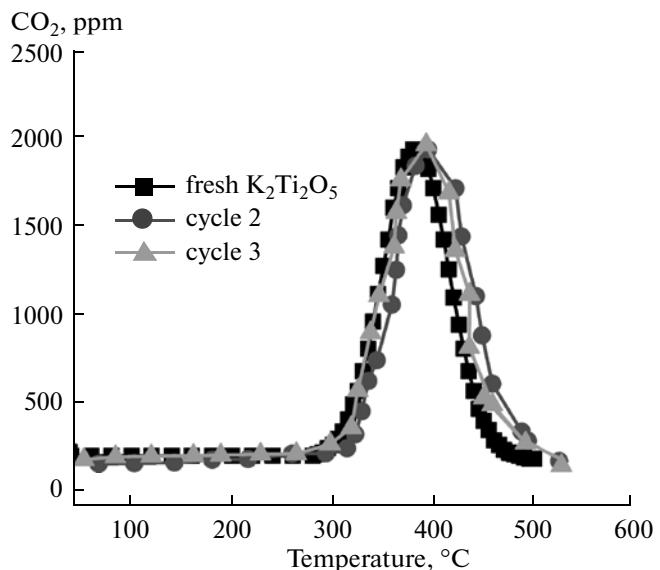
3. RESULTS AND DISCUSSION

3.1. Catalyst Characterization

The X-ray diffraction patterns of potassium titanates catalysts are showed in Fig. 1. From the diffractograms it can be seen that all potassium titanates catalysts prepared are high crystalline materials and their characteristics are consistent with the reference data ($K_6Ti_4O_{11}$ PDF 41-0491, $K_2Ti_2O_5$ PDF 13-0448, $K_2Ti_4O_9$ PDF 32-0681).

SEM images of $K_2Ti_2O_5$ are shown in Fig. 2. It can be seen that $K_2Ti_2O_5$ sample is composed of irregular flat plate-like particles with the average particle size ranging from several-micrometers to several-tenths of the micrometer both in width and length.

Fig. 3. Soot temperature programmed oxidation (TPO) with O_2 over selected catalysts. (Reaction conditions: 0.9 g of catalyst and 0.1 g soot mixture, total flow rate 100 mL/min, He balance, heating rate 2°/min).


3.2. Soot Oxidation Activity and Stability of Potassium Titanates with O_2

The influence of the catalysts in loose contact mode is very limited and ambiguous due to uncertainties of catalyst soot mixing. The soot activity test of different catalyst, therefore, is studied in the tight contact mode. Figure 3 shows the results of the soot temperature programmed oxidation (TPO) activity test in O_2 for catalyst-soot mixtures in tight contact mode. The onset soot oxidation temperature T_{10} , temperature at soot conversion 10%, is 270, 295, 335°C for $K_6Ti_4O_{11}$, $K_2Ti_2O_5$, $K_2Ti_4O_9$, respectively. The temperature corresponding to the maximum reaction rate of soot oxidation (T_p) increases in the following order: $K_6Ti_4O_{11}$ (312°C) < $K_2Ti_2O_5$ (322°C) < $K_2Ti_4O_9$ (382°C). Among these catalysts, $K_6Ti_4O_{11}$ showed superior performance followed by $K_2Ti_2O_5$. The reason may be higher contents K and O in $K_6Ti_4O_{11}$.

In the present work, the stability of $K_2Ti_2O_5$ in the soot oxidation was also evaluated by comparing the performances of the fresh samples and used samples. When the temperature programmed oxidation test was finished the used catalyst was brought to test again in tight contact mode as shown in Fig. 4. For $K_2Ti_2O_5$ catalyst, no appreciable deactivation was observed, even after three cycles, thereby providing further evidence that this catalyst is highly stable.

3.3. Influence of K/Ti and O/Ti

It is generally accepted that oxygen-containing species play a key role in the catalytic activity of alkali metal compounds during carbon gasification. All

Fig. 4. Stability of $K_2Ti_2O_5$ in soot temperature programmed oxidation (TPO) with O_2 . (Reaction conditions: 0.9 g of catalyst and 0.1 g soot mixture, total flow rate 100 mL/min, He balance, heating rate 2°/min).

potassium titanates $K_6Ti_4O_{11}$, $K_2Ti_2O_5$, $K_2Ti_4O_9$ have good soot oxidation performance according to our present results. Figure 5 shows T_p values as functions of K/Ti and O/Ti in potassium titanates. The soot oxidation peak temperature moves to lower temperature with increasing ratio of potassium to titanium (K/Ti). The ratio of oxygen to titanium (O/Ti) has also a positive impact on the soot oxidation performances of potassium titanates. It is widely accepted that K is the most active catalyst for soot oxidation, based on which many K-doped catalysts with high soot oxidation activities have been developed. Eleonora Aneggi and other authors [19] investigated the soot oxidation activity of CeO_2 with different amount of K, and stated that 10 wt %. K-doped CeO_2 shows the best performance. Moreover they indicated that the presence of potassium stabilizes the activity of the calcined CeO_2 .

3.4. Effect of Contact Mode

Loose contact conditions are better approximation of real operating conditions while the tight contact mode is helpful to get insight into the intrinsic characteristics of the catalysts. So the soot oxidation activities of both contact modes were chosen for comparison in Fig. 6. The onset soot oxidation temperatures T_{10} (temperature at 10% soot conversion) in tight contact mode is similar to that in loose contact mode, while, the T_{max} (temperature at maximum soot oxidation reaction rate) in loose contact is about 70°C higher than that in tight contact mode. In tight contact, the soot is thoroughly oxidized by O_2 in the temperature range from 260 to 380°C, and T_{max} is located at about 340°C, indicating that the oxidation reaction

rate was relatively high. In the case of loose contact, however, soot oxidation temperature range is from 260 to 468°C and T_{\max} is shifted to values around 390°C. The soot particles are well dispersed on the catalyst surface in tight contact, but in the case of loose contact, only small amount of soot was closely contacting the catalyst surface. Occurrence of the same soot on the catalyst surfaces can be the reason to the similarity of T_{10} values whereas a different dispersion state of soot can account for considerable differences in T_{\max} for loose and tight contacts.

3.5. Soot Oxidation with NO_x

The NO_x can influence the soot oxidation activity of $\text{K}_2\text{Ti}_2\text{O}_5$ since NO_x molecule is small enough to gain a free access to all the catalytic sites of potassium titanates. Figure 7 shows the soot oxidation activity with $\text{NO}_x + \text{O}_2$ observed under tight contact conditions. The results show that certain amount of NO_x has a positive influence on the performance of $\text{K}_2\text{Ti}_2\text{O}_5$, which is consistent with the results reported for the Fe_2O_3 catalyst [20]. Both T_{\max} and T_{10} move to high temperatures with decreasing NO_x concentration. With the reaction mixture containing 1% NO_2 a value of T_{\max} is near 290°C, which is about 100°C lower than that found for the 10% O_2 mixture in the absence of NO_2 . It appears that $\text{K}_2\text{Ti}_2\text{O}_5$ may be a kind of catalyst for simultaneous removal of NO_x and soot. Conversely, the lower NO_x concentration at 1000 ppm has a negative influence on the soot catalytic combustion performance of $\text{K}_2\text{Ti}_2\text{O}_5$ and NO has a greater impact than that of NO_2 . The underline reason may be that $\text{K}_2\text{Ti}_2\text{O}_5$ can adsorb and storage NO, and further decrease the soot oxidation activity of $\text{K}_2\text{Ti}_2\text{O}_5$.

3.6. Influence of O_2 Concentration

The effect of O_2 on the soot oxidation activity of $\text{K}_2\text{Ti}_2\text{O}_5$ is shown in Fig. 8. The results show that the O_2 concentration has only a moderate impact on T_{10} , and T_{\max} decreases with enhancing O_2 concentration, implying that the soot oxidation reaction is only controlled by thermodynamics.

3.7. Influence of H_2O and NO

In practice, certain amounts of H_2O exist in the diesel engine emissions. It was therefore of interest to investigate the influence of H_2O and NO on the soot oxidation activity. Figure 9 shows the effect of $\text{H}_2\text{O} + \text{NO}$ on the oxidation activity of $\text{K}_2\text{Ti}_2\text{O}_5$ at different H_2O concentration and constant NO concentration. The results show that both the onset oxidation temperature T_{10} and the soot oxidation peak temperature (T_{\max}) are not influenced by the concentration of H_2O , implying that $\text{K}_2\text{Ti}_2\text{O}_5$ is a kind of water-stable soot oxidation catalyst.

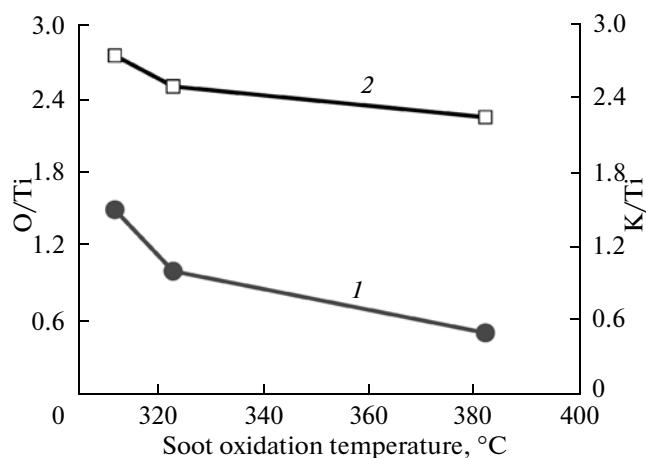


Fig. 5. Correlation between soot oxidation peak temperature and K/Ti , O/Ti .

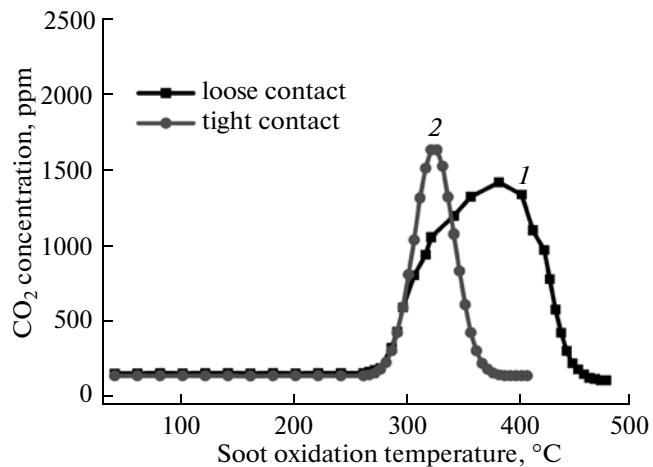


Fig. 6. Temperature programmed oxidation (TPO) of $\text{K}_2\text{Ti}_2\text{O}_5$ in loose and tight contact.

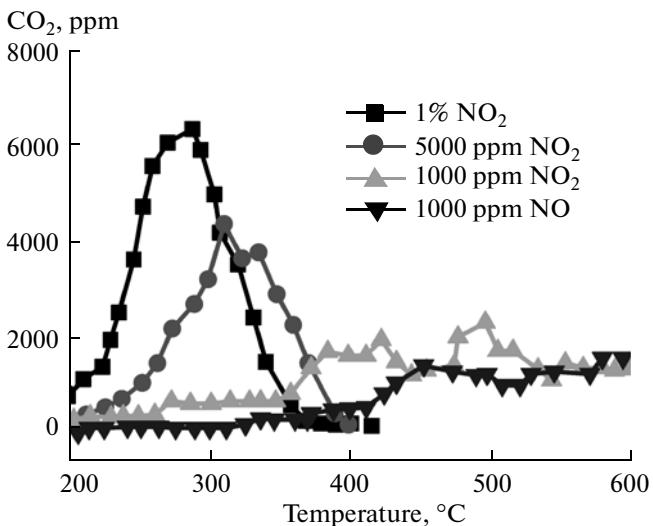
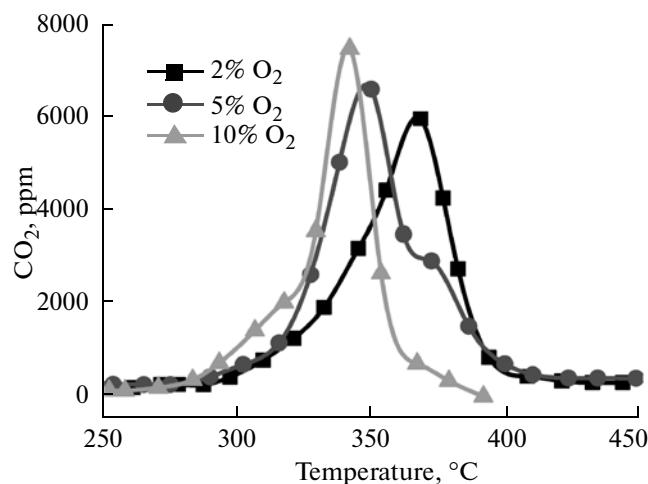
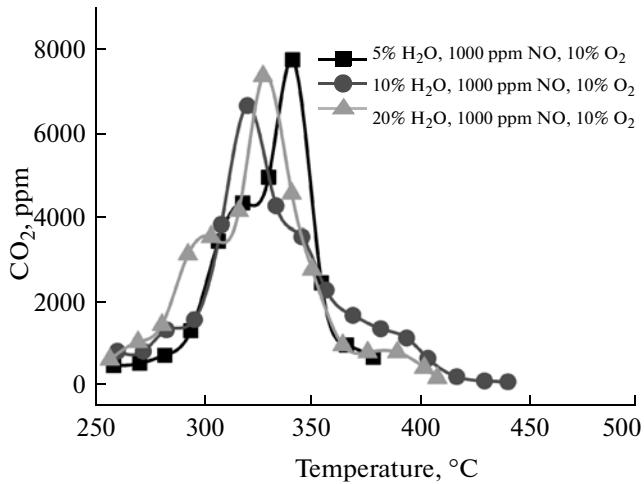



Fig. 7. Effect of NO_x on temperature programmed oxidation (TPO) of $\text{K}_2\text{Ti}_2\text{O}_5$. (Reaction conditions: 0.9 g of catalyst and 0.1 g soot mixture, total flow rate 100 mL/min, He balance, heating rate 2°/min).

Fig. 8. Effect of O_2 on soot oxidation activity of $K_2Ti_2O_5$. (Reaction conditions: 0.9 g of catalyst and 0.1 g soot mixture, total flow rate 100 mL/min, He balance, heating rate 2°/min).

4. CONCLUSIONS


Potassium titanates prepared by sol-gel method have better soot oxidation activity compared with Pt based catalysts, CeO_2 based catalysts, and perovskite. The order of increasing activity of potassium titanates in soot oxidation corresponds to the increasing K/Ti and O/Ti values: $K_6Ti_4O_{11} < K_2Ti_2O_5 < K_2Ti_4O_9$. Certain amount of NO_x has a positive influence on the performance of potassium titanates, suggesting that $K_2Ti_2O_5$ may be a kind of catalyst for simultaneous removal of NO_x and soot. The O_2 concentration has only a moderate impact on the soot oxidation activity of potassium titanates. $K_2Ti_2O_5$ is a kind of water-stable soot oxidation catalyst, since its activity is not affected by the presence of H_2O . With high oxidation activity, water-stability and economical advantages over Pt-based catalysts, $K_2Ti_2O_5$ may be an excellent candidate for removal soot from exhaust gases.

ACKNOWLEDGMENTS

Authors are grateful for the financial supports provided for this research by the Education Department of Liaoning Province of China (No. 2009T061) and Ministry of Education of China (No. [2010] 1561).

REFERENCES

1. Somers, C.M., Mccarry, B.E., Malek, F., and Quinn, J.S., *Science*, 2004, vol. 304, p. 1008.
2. Finlayson, B.J. and Pitts, J.N., *Science*, 1997, vol. 276, p. 1045.
3. Liu, Z.P., Jenkins, S.J., and King, D.A., *J. Am. Chem. Soc.*, 2004, vol. 126, no. 34, p. 10746.

Fig. 9. Effect of H_2O on soot oxidation activity of $K_2Ti_2O_5$. (Reaction conditions: 0.9 g of catalyst and 0.1 g soot mixture, total flow rate 100 mL/min, He balance, heating rate 2°/min).

4. Marques, R., Darcy, P., Costa, P.D., Mellottee, H., Trichard, J.M., and Djega-Mariadassou, G., *J. Mol. Catal. A: Chem.*, 2004, vol. 221, p. 127.
5. Wang, Q., Park, S.Y., Choi, J.S., and Chung, J.S., *Appl. Catal., B*, 2008, vol. 79, p. 101.
6. Stanmore, B.R., Brilhac, J.F., and Gilot, P., *Carbon*, 2001, vol. 39, no. 15, p. 2247.
7. Krishna, K. and Makkee, M., *Catal. Today*, 2006, vol. 114, p. 48.
8. Liu, S., Obuchi, A., Oi-Uchisawa, J., Nanba, T., and Kushiyama, S., *Appl. Catal., B*, 2001, vol. 30, nos. 3–4, p. 259.
9. Fino, D., Fino, P., Saracco, G., and Specchia, V., *Appl. Catal., B*, 2003, vol. 43, p. 243.
10. Hong, S.S. and Lee, G.D., *Catal. Today*, 2000, vol. 63, p. 397.
11. Machida, M., Murata, Y., Kishikawa, K., Zhang, D., and Ikeue, K., *Chem. Mater.*, 2008, vol. 20, no. 13, p. 4489.
12. Weng, D., Li, J., Wu, X., and Lin, F., *Catal. Commun.*, 2008, vol. 9, no. 9, p. 1898.
13. Liang, Q., Wu, X., Weng, D., and Lu, Z., *Catal. Commun.*, 2008, vol. 9, no. 2, p. 202.
14. Wang, Q., Park, S.Y., Duan, L.H., and Chung, J.S., *Appl. Catal., B*, 2008, vol. 85, p. 10.
15. Wang, Q., Park, S.Y., Choi, J.S., and Chung, J.S., *Appl. Catal., B*, 2008, vol. 79, p. 101.
16. Wang, Q. and Chung, J.S., *Appl. Catal., A*, 2009, vol. 358, p. 59.
17. Wang, Q., Zhu, J.H., Wei, S.Y., Chung, J.S., and Guo, Z.H., *Ind. Eng. Chem. Res.*, 2010, vol. 49, p. 7330.
18. Wang, Q., Sohn, J.H., and Chung, J.S., *Appl. Catal., B*, 2009, vol. 89, p. 97.
19. Aneggi, E., Leitenburg, C., Dolcetti, G., and Trovarelli, A., *Catal. Today*, 2008, vol. 136, nos. 1–2, p. 3.
20. Reichert, D., Bockhorn, H., and Kureti, S., *Appl. Catal., B*, 2008, vol. 80, p. 248.